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Abstract. A general theory of the Casimir-Polder interaction of single atoms with dispersing and absorbing
magnetodielectric bodies is presented, which is based on QED in linear, causal media. Both ground-state
and excited atoms are considered. Whereas the Casimir-Polder force acting on a ground-state atom can
conveniently be derived from a perturbative calculation of the atom-field coupling energy, an atom in an
excited state is subject to transient force components that can only be fully understood by a dynamical
treatment based on the body-assisted vacuum Lorentz force. The results show that the Casimir-Polder force
can be influenced by the body-induced broadening and shifting of atomic transitions — an effect that is
not accounted for within lowest-order perturbation theory. The theory is used to study the Casimir-Polder
force of a ground-state atom placed within a magnetodielectric multilayer system, with special emphasis
on thick and thin plates as well as a planar cavity consisting of two thick plates. It is shown how the
competing attractive and repulsive force components related to the electric and magnetic properties of
the medium, respectively, can — for sufficiently strong magnetic properties — lead to the formation of
potential walls and wells.

PACS. 12.20.-m Quantum electrodynamics – 34.50.Dy Interactions of atoms and molecules with surfaces;
photon and electron emission; neutralization of ions – 42.50.Nn Quantum optical phenomena in absorbing,
dispersive and conducting media

1 Introduction

It is one of the most surprising consequences of quan-
tum electrodynamics (QED) that a neutral unpolarized
atom will be subject to a force when placed in the vicin-
ity of neutral unpolarized bodies — even when the body-
assisted electromagnetic field is in its vacuum state. The
existence of this force commonly called Casimir-Polder
(CP) force is experimentally well established. Casimir-
Polder forces have been observed via mechanical means
using atomic beam scattering [1] and transmission [2]
as well as quantum reflection [3], and via spectroscopic
means [4], inter alia frequency modulated selective reflec-
tion spectroscopy [5]. They are crucial for the understand-
ing of many phenomena in nature such as the adsorption of
atoms or molecules to surfaces [6] or even the remarkable
climbing skills of some geckoes and spiders [7,8]. Apart
from their important role in atomic-force microscopy [9],
major applications of CP forces have been found in the
field of atom optics [10], where they have been used to
construct atomic mirrors [11], which in connection with
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evanescent electromagnetic waves can even operate state-
selectively [12].

If the atom is not too close to the surface of any of the
bodies, a theoretical understanding of the CP force can be
obtained within the framework of macroscopic QED. So,
Casimir and Polder derived the force from the atom-field
coupling energy calculated in lowest-order perturbation
theory [13], yielding the potential — in the following re-
ferred to as the van der Waals (vdW) potential — from
which the force can then be derived. This approach first
applied to the case of a ground-state atom placed in front
of a perfectly conducting plate was later extended to ex-
cited atoms [14] as well as to atoms between two perfectly
conducting plates [15]. Moreover, the concept has been
used to calculate the force acting on an atom placed in
front of a semi-infinite dielectric half space [16], near a
carbon nanotube [17], or between two dielectric plates of
finite thickness [18]. Recently, the ideas of Casimir and
Polder have been generalized to allow for dispersing and
absorbing bodies [19,20]. In parallel with the exact QED
approach, a semiphenomenological method has been es-
tablished and widely used. According to this approach,
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the coupling energy is expressed in terms of correla-
tion functions for the atom and/or the electromagnetic
field which in turn are related to susceptibilities via the
dissipation-fluctuation theorem. The result — which in
principle applies to arbitrary geometries — was first used
for a ground-state atom placed in front of a perfectly con-
ducting half space [21], a dielectric half space [22], and a
dielectric two-layer system [23]. Later, atoms in excited en-
ergy eigenstates were included in the concept [24]. Effects
of surface roughness [25] and finite temperature [26,27]
and — in the case of the semi-infinite half space — dif-
ferent materials such as birefringent dielectric [28] or even
magnetodielectric matter [29] have been studied.

In the large body of work on forces between polar-
izable objects the electric properties of the involved ob-
jects have typically been the focus of interest. Neverthe-
less, the fact that Maxwell’s equations in the absence of
(free) charges and currents are invariant under a duality
transformation between electric and magnetic fields can
be exploited to extend the notion of these forces to mag-
netically polarizable objects. Thus, knowing the attrac-
tive force between two electrically polarizable atoms, one
can infer the existence of an analogous attractive force
between two magnetically polarizable atoms, which may
be obtained from the former by replacing the electric po-
larizabilities by the corresponding magnetic ones. In con-
trast, the force between two atoms of opposed polariz-
ability (i.e., electric/magnetic) is repulsive [30]. While the
repulsive force in the retarded limit obeys the same power
law [31,32], the leading contribution to the repulsive force
in the nonretarded limit is weaker than the corresponding
attractive force between two electrically polarizable atoms
by two powers in the atom-atom-separation [33]. A sim-
ilar hierarchy of attractive and repulsive forces with cor-
responding asymptotic power laws has been found for the
Casimir force between two semi-infinite half spaces pos-
sessing electric or magnetic properties, respectively [34]
(see also Sect. 4.2).

Surprisingly, the CP force between a single atom and
a macroscopic body has not yet been considered in de-
tail in this context. The repulsive retarded force found for
a magnetically polarizable atom interacting with a per-
fectly conducting plate implies — by virtue of a dual-
ity transformation — that the retarded force between an
electrically polarizable atom and an infinitely permeable
plate should also be repulsive, which provides interest-
ing opportunities. A thorough analysis of the CP force
between a single atom and a system of genuinely magne-
todielectric bodies is desirable for three reasons: First, the
availability of sensitive spectroscopic measurement tech-
niques [5] suggests that in this case an experimental veri-
fication of repulsive forces is much more likely than in the
case of two macroscopic bodies, where the mechanic mea-
surements are currently restricted to distance regimes of
purely attractive forces [35]. Second, the rapidly increasing
amount of miniaturization in current technologies shows
that CP-type forces will have to be thoroughly taken into
account in the near future. Even today, Casimir forces
are responsible for the problem of the sticking of nanode-

vices common in nanotechnology [34], while CP forces can
pose severe limits on the trap lifetime on atom chips [36].
Third, the recent fabrication of metamaterials with con-
trollable magnetic and electric properties in the microwave
regime [37,38] and the rapid developments in this field
imply the question of to what extent CP forces could be
shaped by a clever use of magnetodielectrics with appro-
priate properties. A thorough analysis of the dependence
of CP forces — including both perturbing and desirable
effects — on relevant material and geometrical parame-
ters can therefore add further impetus to the research and
design of new materials as well as show the direction to-
wards which intensified efforts should be aimed — having
in mind the future perspective of CP-force engineering.

In this paper we study — within the frame of exact
quantization of the macroscopic electromagnetic field in
linear, causal media (reviewed in Sect. 2) — the CP in-
teraction between a single atom and an arbitrary arrange-
ment of linear, dispersing, and absorbing magnetodielec-
tric bodies. We approach the problem from two sides, by
first considering the perturbative atom-field coupling en-
ergy (Sect. 3.1), and by second going beyond perturba-
tion theory, presenting a dynamical approach based on the
Lorentz force averaged with respect to the body-assisted
electromagnetic vacuum and the internal atomic motion
(Sect. 3.2). Section 4 is then devoted to the particular
problem of the competing effects of the electric and mag-
netic material properties on the CP force acting on a
ground-state atom placed within a genuinely magnetodi-
electric multilayer system, where we study the examples
of asymptotically thick and thin plates (Sects. 4.1 and 4.2,
respectively) as well as a simple planar cavity (Sect. 4.3)
in more detail. Finally, a summary and some concluding
remarks are given in Section 5.

2 QED in dispersing and absorbing
magnetodielectric media

The study of the interaction of atoms with the electro-
magnetic field in the presence of linearly responding mag-
netodielectric bodies requires quantization of the elec-
tromagnetic field in linear, causal media. Consider an
arbitrary arrangement of neutral, linear, isotropic, dis-
persing, and absorbing magnetodielectric bodies, which
can be characterized by their (relative) electric permit-
tivity ε(r, ω) and their (relative) magnetic permeability
µ(r, ω). Both quantities are complex-valued functions that
vary with space and — in accordance with the Kramers-
Kronig relations — with frequency. Note that for absorb-
ing media we have Im ε(r, ω) > 0 and Im µ(r, ω) > 0. In
the absence of free charges and currents Maxwell’s equa-
tions in frequency space are given by

∇ · B̂(r, ω) = 0, ∇× Ê(r, ω)− iωB̂(r, ω) = 0, (1)

∇ · D̂(r, ω) = 0, ∇× Ĥ(r, ω) + iωD̂(r, ω) = 0, (2)
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where

D̂(r, ω) = ε0Ê(r, ω) + P̂(r, ω), (3)

Ĥ(r, ω) = κ0B̂(r, ω)− M̂(r, ω) (4)

(κ0 = µ−1
0 ), and the constitutive relations read

P̂(r, ω) = ε0[ε(r, ω)− 1]Ê(r, ω) + P̂N(r, ω), (5)

M̂(r, ω) = κ0[1− κ(r, ω)]B̂(r, ω) + M̂N(r, ω) (6)

[κ(r, ω) = µ−1(r, ω)]. In equations (5) and (6), P̂N(r, ω)
and M̂N(r, ω) denote noise polarization and noise mag-
netization, which are unavoidably associated with electric
and magnetic losses, respectively. Equations (1)–(6) imply
that the electric field obeys a Helmholtz equation[

∇× κ(r, ω)∇× − ω2

c2
ε(r, ω)

]
Ê(r, ω) = iωµ0ĵN(r, ω),

(7)
the source term of which is given by the noise current
density

ĵ
N
(r, ω) = −iωP̂N(r, ω) + ∇× M̂N(r, ω). (8)

Upon introducing the (classical) Green tensor, which is
defined by the equation[

∇× κ(r, ω)∇× − ω2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r− r′)

(9)
together with the boundary condition

G(r, r′, ω)→ 0 for|r− r′| → ∞, (10)

the solution to equation (7) can be given in the form

Ê(r, ω) = iωµ0

∫
d3r′ G(r, r′, ω) · ĵ

N
(r′, ω). (11)

The Green tensor has the following useful properties [39]:

G∗(r, r′, ω) = G(r, r′,−ω∗), (12)

G(r, r′, ω) = G�(r′, r, ω), (13)

∫
d3s
{
Im κ(s, ω)

[
G(r, s, ω)×←−∇s

] · [∇s × G∗(s, r′, ω)
]

+
ω2

c2
Im ε(s, ω)G(r, s, ω) · G∗(s, r′, ω)

}
= ImG(r, r′, ω),

(14)

where
[
G(r, s, ω)×←−∇s

]
ij

= εjkl∂
s
l Gik(r, s, ω).

Having expressed the electric-field operator in the fre-
quency domain in the form of equation (11), quantiza-
tion can be performed by relating noise polarization and
noise magnetization to Bosonic vector fields f̂e(r, ω) and
f̂m(r, ω),
[
f̂λi(r, ω), f̂ †

λ′j(r
′, ω′)

]
= δλλ′δijδ(r− r′)δ(ω − ω′), (15)

[
f̂λi(r, ω), f̂λ′j(r′, ω′)

]
= 0 (16)

(λ, λ′ ∈ {e, m}), as follows:

P̂N(r, ω) = i

√
�ε0

π
Im ε(r, ω) f̂e(r, ω), (17)

M̂N(r, ω) =

√
−�κ0

π
Im κ(r, ω) f̂m(r, ω). (18)

Combining equations (8), (11), (17), and (18), on using
the convention

Ô(r) =
∫ ∞

0

dω Ô(r, ω) + H.c., (19)

yields the body-assisted electric field in terms of the dy-
namical variables f̂λ(r, ω) and f̂†λ(r, ω),

Ê(r) =
∑

λ=e,m

∫ ∞

0

dω

∫
d3r′ Gλ(r, r′, ω) · f̂λ(r′, ω) + H.c.,

(20)
where

Ge(r, r′, ω) = i
ω2

c2

√
�

πε0
Im ε(r′, ω)G(r, r′, ω), (21)

Gm(r, r′, ω) = −i
ω

c

√
− �

πε0
Im κ(r′, ω)

[
G(r, r′, ω)×←−∇r′

]
.

(22)

The body-assisted induction field can be obtained by com-
bining equations (1), (8), (11), (17), and (18), resulting in

B̂(r) =
∑

λ=e,m

∫ ∞

0

dω

iω

∫
d3r′ ∇

× Gλ(r, r′, ω) · f̂λ(r′, ω) + H.c. (23)

It can be proved [39] that the fundamental (equal-time)
commutation relations

[
Êi(r), Êj(r′)

]
= 0 =

[
B̂i(r), B̂j(r′)

]
, (24)

[
ε0Êi(r), B̂j(r′)

]
= −i�εijk∂kδ(r− r′) (25)

are valid. It is obvious that the Hamiltonian of the system
consisting of the electromagnetic field and the bodies can
be given by

ĤF =
∑

λ=e,m

∫
d3r

∫ ∞

0

dω �ω f̂†λ(r, ω) · f̂λ(r, ω). (26)

After having thus established a consistent description of
the quantized body-assisted electromagnetic field, one can
proceed by introducing atom-field interactions. To that
end, consider a single neutral atomic system such as
an atom or a molecule (briefly referred to as atom in
the following) consisting of particles α with charges qα

(
∑

α qα = 0), masses mα, positions r̂α, and canonically
conjugated momenta p̂α, the dynamics of which can be
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described, within the multipolar coupling scheme (cf., e.g.,
Ref. [40]), by the atomic Hamiltonian

ĤA =
∑
α

p̂α
2

2mα
+

1
2ε0

∫
d3r P̂2

A(r). (27)

Here,

P̂A(r) =
∑
α

qαˆ̄rα

∫ 1

0

dλ δ(r − r̂A − λˆ̄rα) (28)

is the atomic polarization relative to the center of mass

r̂A =
∑

α

mα

mA
r̂α (29)

(mA =
∑

α mα), where

ˆ̄rα = r̂α − r̂A (30)

denotes relative particle coordinates. In electric dipole ap-
proximation the atom-field interaction can be described by
the Hamiltonian

ĤAF = −d̂ · Ê(r̂A) +
1

2mA

[
p̂A, d̂×B̂(r̂A)

]
+

(31)

([â, b̂]+ = â · b̂ + b̂ · â), where

d̂ =
∑
α

qαr̂α =
∑

α

qαˆ̄rα (32)

denotes the electric dipole moment of the atom,

p̂A =
∑

α

p̂α (33)

is its total (canonical) momentum, and Ê(r̂A) and B̂(r̂A),
respectively, are given by equations (20) and (23) (for
details, see [39]). The second term in equation (31) is
known as the Röntgen interaction, it is obviously due to
the translational motion of the atom. Combining equa-
tions (26), (27), and (31), the total system can be de-
scribed by the Hamiltonian

Ĥ = ĤF + ĤA + ĤAF. (34)

3 Casimir-Polder force

The existence of the CP force acting on a neutral, nonpo-
lar atom placed in the vicinity of neutral, nonpolar bodies
— even when the body-assisted electromagnetic field is
in its vacuum state |{0}〉 [defined by fλ(r, ω)|{0}〉 = 0] —
can be understood by noting that the vacuum electromag-
netic field, while vanishing on average, exhibits nonzero
fluctuations around this average, which can become high-
ly inhomogeneous due to the presence of the bodies. In
particular, for the electric field we have

〈Ê(r)〉 = 0 (35)

[cf. equations (20)–(22)] and

〈[∆Ê(r)]2〉 = 〈{0}|Ê2(r)|{0}〉 − 〈{0}|Ê(r)|{0}〉2

=
�

πε0

∫ ∞

0

dω
ω2

c2
Im
[
Tr G(r, r, ω)

]
(36)

[combine equations (20)–(22) with commutation relations
(15) and (16), and use integral equation (14)]. The inho-
mogeneous part of the vacuum fluctuations of the body-
assisted electromagnetic field, in combination with the
quantum fluctuations of the atomic electric dipole mo-
ment, can be regarded responsible for the CP force.

3.1 Perturbative treatment

In the perturbative treatment, the CP force acting on an
atom in an energy eigenstate |l〉 (with corresponding en-
ergy El) is commonly derived from the lowest-order en-
ergy shift ∆El of the state |l〉|{0}〉 due to the (electric
part of the) interaction Hamiltonian (31), which is a good
approximation provided that both the internal and the
center-of-mass motion of the atom are nonrelativistic. The
position-dependent part of the energy shift is interpreted
as the potential energy Ul(rA) — the vdW potential —
from which the force Fl(rA) can be obtained (∇A ≡∇rA):

∆El = ∆E
(0)
l + Ul(rA), (37)

Fl(rA) = −∇AUl(rA). (38)

Equation (38) can be interpreted in several ways. So it can
be regarded as giving the force in the Newtonian equation
of motion for the center-of-mass coordinate, which is fur-
ther evaluated within the frame of quantum mechanics
(cf., e.g., the analysis of quantum reflection in Ref. [41])
or, if possible, also within the frame of classical mechanics
(cf., e.g., Ref. [1]). In any case the center-of-mass motion
should be sufficiently slow, so that it (approximately) de-
couples from the electronic motion in the spirit of a Born-
Oppenheimer approximation. Equation (38) can also be
regarded as determining the force that must be compen-
sated for in the case where the center-of-mass coordinate
may be considered as a given (classical) parameter con-
trolled externally. Since there is no need here to distin-
guish between the possible interpretations, the operator
hat can be dropped.

The leading-order energy shift is given by the second-
order term

∆El = −1
�

∑
k

∑
λ=e,m

P
∫ ∞

0

dω

ωkl + ω

∫
d3r

× ∣∣〈l|〈{0}| − d̂ · Ê(rA)|{1λ(r, ω)}〉|k〉∣∣2 (39)

[P , principal part; |{1λ(r, ω)}〉 ≡ f†λ(r, ω)|{0}〉]. We recall
definitions (20)–(22) and make use of commutation rela-
tions (15) and (16) as well as the relation (14), leading to

Ul(rA) = −µ0

π

∑
k

P
∫ ∞

0

dω
ω2

ωkl + ω

× dlk · Im G(1)(rA, rA, ω) · dkl (40)
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(dlk = 〈l|d̂|k〉). Note that in agreement with equation (37)
we have dropped the rA-independent part of the energy
shift by replacing G(rA, rA, ω) �→ G(1)(rA, rA, ω), where
according to

G(r, r′, ω) = G(0)(r, r′, ω) + G(1)(r, r′, ω) (41)

the Green tensor has been decomposed into the (trans-
lationally invariant) bulk part G(0)(r, r′, ω) corresponding
to the vacuum region the atom is situated in plus the scat-
tering part G(1)(r, r′, ω) that accounts for the presence of
the magnetodielectric bodies.

Equation (40) can be rewritten in a more convenient
form by transforming the integral along the real frequency
axis into an integral along the (positive) imaginary fre-
quency axis with the aid of property (12) together with
the well-known large-frequency behaviour of the scatter-
ing Green tensor [39]. The result is

Ul(rA) = Uor
l (rA) + U r

l (rA), (42)

where

Uor
l (rA) =

�µ0

2π

∫ ∞

0

du u2Tr
[
α

(0)
l (iu) · G(1)(rA, rA, iu)

]
(43)

is the off-resonant part of the potential,

U r
l (rA) =

− µ0

∑
k

Θ(ωlk)ω2
lkdlk ·Re

[
G(1)(rA, rA, ωlk)

] · dkl (44)

[Θ(z), unit step function] is the resonant part due the
poles at ω = ±ωlk for ωlk > 0, and

α
(0)
l (ω) = lim

ε→0

2
�

∑
k

ωkldlkdkl

ω2
kl − ω2 − iωε

(45)

is the (lowest-order) atomic polarizability tensor. Note
that the resonant part of the vdW potential, which is ab-
sent if the atom is prepared in its ground state, will in gen-
eral dominate over the off-resonant part for excited-state
atoms. In particular for an atom in a spherically symmet-
ric state, e.g., the ground state, equations (43) and (44)
reduce to

Uor
l (rA) =

�µ0

2π

∫ ∞

0

du u2α
(0)
l (iu)TrG(1)(rA, rA, iu),

(46)

U r
l (rA) = −µ0

3

∑
k

Θ(ωlk)ω2
lk|dlk|2

× Re
[
TrG(1)(rArA, ωlk)

]
, (47)

where

α
(0)
l (ω) = lim

ε→0

2
3�

∑
k

ωkl|dlk|2
ω2

kl − ω2 − iωε
. (48)

Equations (42)–(45) give the vdW potential of an atom
which is prepared in an energy eigenstate and situated

near an arbitrary arrangement of linear, isotropic, dispers-
ing, and absorbing magnetodielectric bodies as a result of
lowest-order QED perturbation theory. Needless to say
that they also apply to left-handed materials [37,38,42],
for which standard (normal-mode) quantization runs into
difficulties. Moreover, the derivation given can be re-
garded as a foundation of results obtained on the basis of
(semiphenomenological) linear response theory [23,27,29].
It should be pointed out that the ground-state potential
obtained from equation (43) can equivalently be expressed
in terms of an integral along the positive (real) frequency
axis, namely

U0(rA) = Uor
0 (rA) = −�µ0

2π

×
∫ ∞

0

dω ω2Im
{
Tr
[
α

(0)
0 (ω) · G(1)(rA, rA, ω)

]}
. (49)

This form allows for a simple physical interpretation of the
vdW potential as being due to the vacuum fluctuations
of the electric field inducing an electric dipole moment
of the atom, together with the ground-state fluctuations
of the atomic electric dipole moment inducing an electric
field [27].

3.2 Dynamical theory

A number of issues regarding the CP force can not be ad-
dressed within the framework of (time-independent) per-
turbation theory. First, it is known that the presence of
macroscopic bodies can give rise to a considerable change
in the atomic level structure by inducing shifts and broad-
enings of atomic transitions — an effect that is clearly not
accounted for in the lowest-order atomic polarizability as
given by equation (45). Second, spontaneous decay of an
atom initially prepared in an excited state will necessarily
induce a dynamical evolution of the force, a description
of which is beyond the scope of a time-independent the-
ory. Third, the perturbative treatment does not answer
the question of the force acting on an atom not prepared
in an eigenstate of the atomic Hamiltonian (27). Fourth, it
seems difficult to generalize the perturbative method to-
wards a theory that allows for electromagnetic fields pre-
pared in arbitrary states — thus extending the concept of
CP forces beyond a pure vacuum theory. And fifth, per-
turbative methods break down completely in the case of
strong atom-field coupling.

In order to obtain an improved understanding of the
CP force, we consider a dynamical theory, the starting
point being the Lorentz force as appearing in the center-
of-mass equation of motion of the atom. Using Hamilto-
nian (34) together with equations (26), (27), and (31) and
recalling definitions (29) and (33), one can verify that

mA
˙̂rA =

i

�

[
Ĥ, mAr̂A

]
= p̂A + d̂× B̂(r̂A), (50)
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hence the total Lorentz force F̂ is given according to

mA
¨̂rA = F̂ =

i

�

[
Ĥ, p̂A

]
+

d
dt

[
d̂× B̂(r̂A)

]

=
{

∇[d̂ · Ê(r)
]
+

d
dt

[
d̂× B̂(r)

]}
r=r̂A

, (51)

where (in the last step) magnetic dipole terms have been
discarded in consistency with the electric dipole approx-
imation made, and a nonrelativistic center-of-mass mo-
tion of the atom has been assumed. Taking the expecta-
tion value with respect to the field state and the internal
atomic state yields an expression for the force governing
the center-of-mass motion,

〈
F̂
〉

=
{

∇〈d̂ · Ê(r)
〉

+
d
dt

〈
d̂× B̂(r)

〉}
r=r̂A

. (52)

Equation (52) together with equations (20)–(23) and
equation (32) can be used to calculate the force in case
of arbitrary (internal) atomic states, arbitrary field states,
and both weak and strong atom-field coupling. Obtaining
an explicit expression for the — in general time-dependent
— force that only depends on the initial conditions re-
quires solving the atom-field dynamics, i.e., d̂ = d̂(t),
Ê(r) = Ê(r, t), B̂(r) = B̂(r, t), as governed by Hamil-
tonian (34) together with equations (26), (27), and (31).

In order to compare with the perturbative results of
Section 3.1, we will calculate the force for the particular
case of the body-assisted field being initially prepared in
the vacuum state |{0}〉 and the atom being initially pre-
pared in an energy eigenstate |l〉, so that the initial density
operator can be written as

�̂ = |{0}〉〈{0}| ⊗ |l〉〈l|. (53)

We further assume that the atom-field coupling is weak,
such that, for chosen center-of-mass coordinate, the equa-
tions for the internal atomic motion can be solved in the
well-known Markov approximation. The physical meaning
of the force determined in this way is basically the same
as in the perturbative treatment, so that — according to
the remarks below equation (38) — the center-of-mass co-
ordinate may be again regarded as being either a dynami-
cal (operator-valued) variable or a (c-number) parameter.
Therefore we will again drop the operator hat in what
follows. In any case, the condition

G[r, rA(t+∆t), ω] 
 G[r, rA(t), ω] for ∆t ≤ Γ−1
C (54)

must be satisfied in order to assure the validity of the
Born-Oppenheimer type approximation, where ΓC is a
characteristic intra-atomic decay rate. For a non-degene-
rate system equation (52) then leads to [20]

〈
F̂(t)
〉

=
∑
m

σmm(t)Fm(rA), (55)

where

Fm(rA) =
µ0

2π

∑
k

∫ ∞

0

dω ω2

× ∇Admk · Im
[
G(1)(rA, rA, ω)

] · dkm

ω + ω̃km(rA)− i[Γk(rA) + Γm(rA)]/2
+ H.c., (56)

and the internal atomic density matrix elements σmm(t)
obey the balance equations

σ̇mm(t) = −Γm(rA)σmm(t) +
∑

n

Γ m
n (rA)σnn(t) (57)

together with the initial condition σmm(0) = δml. In equa-
tions (56) and (57),

ω̃mn(rA) = ωmn + δωm(rA)− δωn(rA) (58)

are the body-induced, position-dependent, shifted atomic
transition frequencies, where

δωm(rA) =
∑

k

δωk
m(rA) (59)

with

δωk
m(rA) =

µ0

π�
P
∫ ∞

0

dω ω2

× dmk · Im
[
G(1)(rA, rA, ω)

] · dkm

ω̃mk(rA)− ω
, (60)

and
Γm(rA) =

∑
k

Γ k
m(rA) (61)

are the position-dependent level widths, where

Γ k
m(rA) =

2µ0

�
Θ[ω̃mk(rA)][ω̃mk(rA)]2

× dmk · Im
{
G[rA, rA, ω̃mk(rA)]

} · dkm. (62)

Note that equations (58)–(60) have to be solved self-
consistently, where the position-independent Lamb-shift
terms resulting from G(0) (rA, rA, ω) [recall equation (41)]
have been absorbed in the transition frequencies ωmn.

In a similar way as in Section 3.1 [cf. the remark above
equation (42)], equation (56) can be simplified by means
of contour integral techniques, resulting in

Fm(rA) = For
m(rA) + Fr

m(rA), (63)

where

For
m(rA) = −�µ0

4π

∫ ∞

0

duu2
[
(αm)ij(rA, iu)

+ (αm)ij(rA,−iu)
]∇AG

(1)
ij (rA, rA, iu) (64)

and

Fr
m(rA) =

µ0

2

∑
k

Θ(ω̃mk)Ω2
mk(rA)

×
{

∇dmk · G(1)[r, r, Ωmk(rA)] · dkm

}
r=rA

+ H.c., (65)
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with

αm(rA, ω) =
1
�

∑
k

{
dmkdkm

ω̃km(rA)− ω − i[Γk(rA) + Γm(rA)]/2

+
dkmdmk

ω̃km(rA) + ω + i[Γk(rA) + Γm(rA)]/2

}
, (66)

being the (exact) body-assisted atomic polarizability and

Ωmk(rA) = ω̃mk(rA) + i[Γm(rA) + Γk(rA)]/2, (67)

denoting the shifted and broadened atomic transition
frequencies.

The dynamical result differs from the perturbative one
in several respects. From equations (55) and (57) it is seen
that — as expected — spontaneous decay gives rise to a
temporal evolution of the CP force, which is governed by
the temporal evolution of the respective diagonal density
matrix elements. Only if the atom is initially (at time t =
0) prepared in its ground state (l = 0), a time-independent
force 〈

F̂(t)
〉

=
〈
F̂(0)
〉

= F0(rA) = For
0 (rA) (68)

can be observed. When on the contrary the atom is ini-
tially prepared in an excited state (l �= 0), then the initial
single-component force

〈
F̂(0)
〉

= Fl(rA) (69)

can be observed only for times t Γ−1
l (rA), i.e.,

〈
F̂(t)
〉 
 Fl(rA), t Γ−1

l (rA). (70)

In the further course of time the single-component force
evolves into a multi-component force at intermediate times
(the atom being in a mixed state) and eventually reduces
to the ground-state force for large times,

〈
F̂(t)
〉 
 F0(rA), t� Γ−1

m (rA) ∀ m ≤ l. (71)

Thus the perturbative treatment of Section 3.1 effectively
turns out to be an approximate calculation of the force
components Fl(rA), thereby disregarding the effects of
level shifting and broadening. On the contrary, the force
components as given by equations (64) and (65) depend
on the correct shifted and broadened atomic transition
frequencies (67) that are observed in the presence of
the bodies, and hence also on the correct body-assisted
position-dependent polarizability (66). Inspection of equa-
tions (64)–(67) reveals that the frequency shifts affect
both ground- and excited-state force components, whereas
the decay-induced level broadening only has a noticeable
(reducing) effect on the resonant force components present
for atoms in excited states. For example, the resonant force
component Fr

1(zA) = F r
1(zA)ez acting on an excited two-

level atom situated at a very small distance zA from a
semi-infinite dielectric half-space is given by [20]

F r
1(zA) = − 3|d10|2

32πε0z4
A

|ε[Ω10(zA)]|2 − 1
|ε[Ω10(zA)] + 1|2 . (72)
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Fig. 1. Resonant part of the CP force on an excited two-level
atom that is situated at distance (a) zA/λTe = 0.0075 and (b)
zA/λTe = 0.009 (λTe = 2πc/ωTe) of a semi-infinite dielectric
half space and whose transition dipole moment is perpendic-
ular to the interface, as a function of the atomic transition
frequency (solid lines), where ωPe/ωTe = 0.75, γe/ωTe = 0.01,
ω2

Te|d10|2/(3π�ε0c
3) = 10−7. For comparison, both the pertur-

bative result, i.e., δωm(zA) = Γm(zA) = 0 (dashed lines) and
the results obtainable by only considering the effect of level
shifting, i.e., Γm(zA) = 0 (dotted lines) or only considering the
effect of level broadening, i.e., δωm(zA) = 0 (dash-dotted lines)
are shown.

From Figure 1, which shows F r
1(zA) for the case of the

permittivity being modelled by

ε(ω) = 1 +
ω2

Pe

ω2
Te − ω2 − iωγe

, (73)

it is seen that the typical dispersion profile already ob-
served in the perturbative treatment becomes narrower
due to the level shifting while the level broadening has the
effect of lowering and broadening the dispersion profile.
The different behaviour of the resonant and off-resonant
force components with respect to the effect of level broad-
ening is closely related to the fact that Fr

m(rA) [equa-
tion (65) together with equation (67)] is linear in Γm(rA)
in lowest order, whereas For

m(rA) [equation (64) together
with equation (66)] is only quadratic in Γm(rA), as a Tay-
lor expansion shows. Physically, this can be understood
from the argument that the off-resonant force components
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can be regarded as being due to virtual transitions which
happen on very short time scales, so that spontaneous de-
cay cannot have a major influence.

It is worth noting that the additional position-depen-
dence introduced via the frequency shifts and broadenings
has the effect that even the ground-state force cannot be
derived, in general, from a potential in the way prescribed
by equations (37) and (38) in Section 3.1. While the force
as given by equation (55) can of course still be written
as a (time-dependent) potential force provided that the
force components as given by equations (63)–(65) are ir-
rotational vectors (which is indeed the case for, e.g., an
atom in the presence of planarly, spherically or cylindri-
cally multilayered media), there may be situations where
this is not possible, implying that equations (63)–(65) can
not be derived from an energy expression in the way given
by equations (37) and (38) in principle.

Clearly, the above mentioned effects of level shifting
and broadening can only become relevant when the atom
is situated sufficiently close to a body surface. As already
mentioned, when the frequency shifts and broadenings can
be neglected, δωm(rA) → 0, Γm(rA) → 0, then the dy-
namical result for the force components Fm(rA) calculated
by using equation (63) together with equations (64)–(66)
simplifies to the perturbative one calculated from equa-
tion (38) together with equations (42)–(45). If necessary,
the level shifts could of course be easily introduced in the
perturbative formulas by replacing the bare transition fre-
quencies with the shifted ones [ωmn �→ ω̃mn(rA)]. On the
contrary, introduction of the level broadening is not so
straightforward. In particular, the results of the dynam-
ical theory can not be reproduced from the perturbative
results by making the replacement α

(0)
0 (ω) �→ α0(rA, ω)

in the off-resonant force components (as done, e.g., in
Ref. [29]) and replacing the bare transition frequencies
by complex ones according to ωmn �→ Ωmn(rA) in the
resonant components. Hence, the perturbative results as
given in Section 3.1 may be regarded as a reasonable ap-
proximation only for the ground-state CP force, which is
solely determined by the off-resonant component For

0 (rA)
and thus effectively not influenced by level broadening.

4 Ground-state atom
within magnetodielectric multilayer system

To study the competing effects of electric and magnetic
properties of the bodies on the CP force, let us con-
sider a ground-state atom placed within a magnetodielec-
tric multilayer system. From the arguments given above,
we base, for simplicity, the calculations on the perturba-
tive analysis, calculating the ground-state vdW potential
U0(rA) = Uor

0 (rA) according to equation (46) together
with equation (48).

The planar multilayer system can be characterized as
a stack of n+1 layers labelled by l (l = 0, . . . , n) of thick-
nesses dl with planar parallel boundary surfaces, where
ε(r, ω) = εl(ω) and µ(r, ω) = µl(ω). The coordinate sys-
tem is chosen such that the layers are perpendicular to the

l = 0 l = 1 l = j l = n

d1 dj

ε0(ω) ε1(ω) εj(ω) εn(ω)

µ0(ω) µ1(ω) µj(ω) µn(ω)

zz = 0

. . .. . .

Fig. 2. Sketch of the planar multilayer system.

z-axis and extend from z = 0 to z = dl for l �= 0, n and
from z = 0 to z = −∞ (∞) for l = 0 (n) (cf. Fig. 2, where
the position z = 0 refers to layer j). The scattering part
of the Green tensor at imaginary frequencies for r and r′
in layer j can be given by [43]

G(1)(r, r′, iu) =
∫

d2q eiq·(r−r′)G(1)(q, z, z′, iu) (74)

(q ⊥ ez). Here,

G(1)(q, z, z′, iu) =
µj(iu)
8π2bj

∑
σ=s,p

{
rσ
j−rσ

j+e−2bjdj

Dσ
j

×
[
e+

σ e+
σ e−bj(z−z′) + e−σ e−σ ebj(z−z′)

]

+
1

Dσ
j

[
e+

σ e−σ rσ
j−e−bj(z+z′)

+e−σ e+
σ rσ

j+e−2bjdj ebj(z+z′)
]}

(75)

for j > 0, where

e±s = eq × ez, e±p = − 1
kj

(iqez ± bjeq) (76)

(eq = q/q, q = |q|) with

kj =
u

c

√
εj(iu)µj(iu) (77)

are the polarization vectors for s- and p-polarized waves
propagating in the positive (+) and negative (−) z-
directions, rσ

j− and rσ
j+ are the generalized coefficients for

reflection at the left/right boundary of layer j, which can
be calculated with the aid of the recursive relations

rs
l± =

(
µl±1
bl±1
− µl

bl

)
+
(

µl±1
bl±1

+ µl

bl

)
e−2bl±1dl±1rs

l±1±(
µl±1
bl±1

+ µl

bl

)
+
(

µl±1
bl±1
− µl

bl

)
e−2bl±1dl±1rs

l±1±
,

(78)

rp
l± =

(
εl±1
bl±1
− εl

bl

)
+
(

εl±1
bl±1

+ εl

bl

)
e−2bl±1dl±1rp

l±1±(
εl±1
bl±1

+ εl

bl

)
+
(

εl±1
bl±1
− εl

bl

)
e−2bl±1dl±1rp

l±1±
(79)

(l = 1, . . . , j for rσ
l−, l = j, . . . , n− 1 for rσ

l+, rσ
0− = rσ

n+ =
0),

bl =

√
u2

c2
εl(iu)µl(iu) + q2 (80)
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is the imaginary part of the z-component of the wave vec-
tor in layer l, and

Dσ
j = 1− rσ

j−rσ
j+e−2bjdj . (81)

Let the atom be situated in the otherwise empty layer j,
i.e., εj(iu) = µj(iu) ≡ 1 and

bj =

√
u2

c2
+ q2 ≡ b. (82)

To calculate the vdW potential, we substitute equa-
tion (74) together with equation (75) into equation (46),
thereby omitting irrelevant position-independent terms
[recall that Uor

0 (rA) = U0(rA)]. Evaluating the trace with
the aid of the relations

e±s · e±s = e±s · e∓s = 1, (83)

e±p · e±p = 1, e±p · e∓p = −1− 2
(qc

u

)2

, (84)

which directly follow from equations (76), (77), and (82),
we realize that the resulting integrand of the q-integral
only depends on q. Thus after introducing polar coordi-
nates in the qxqy-plane, we can easily perform the angular
integration, leading to

U0(zA) =
�µ0

8π2

∫ ∞

0

du u2α
(0)
0 (iu)

∫ ∞

0

dq
q

b

×
{

e−2bzA

[
rs
j−

Ds
j

−
(

1 + 2
q2c2

u2

)
rp
j−

Dp
j

]

+ e−2b(dj−zA)

[
rs
j+

Ds
j

−
(

1 + 2
q2c2

u2

)
rp
j+

Dp
j

]}
. (85)

Note that equation (75) and thus equation (85) also apply
to the case j = 0 if d0 is formally set equal to zero (d0 ≡ 0).

Equation (85) together with equation (48) and equa-
tions (78)–(82) gives the vdW potential of a ground-state
atom within a general planar magnetodielectric multilayer
system in terms of the atomic polarizability and the gener-
alized reflection coefficients. Note that instead of calculat-
ing these coefficients from the permittivities and perme-
abilities of the individual layers via equations (78)–(80) (as
we shall do in this paper), it is possible to determine them
experimentally by appropriate reflectivity measurements
(cf., e.g., Ref. [44]). The coefficients Dσ

j [equation (83)]
describe the effect of multiple reflections of radiation at
the two boundaries of the vacuum layer j the atom is
placed in, as can be seen by expanding Dσ

j according to

1
Dσ

j

=
∞∑

n=0

(
rσ
j−e−bjdj rσ

j+e−bjdj
)n

. (86)

Multiple reflections within layer j do obviously not occur
if the atom is placed in one of the semi-infinite outer layers
(j = n), so that equation (85) reduces to

U0(zA) =
�µ0

8π2

∫ ∞

0

du u2α
(0)
0 (iu)

∫ ∞

0

dq
q

b
e−2bzA

×
[
rs
n− −

(
1 + 2

q2c2

u2

)
rp
n−

]
. (87)

4.1 Infinitely thick plate

Let us apply equations (85) and (87) to some simple sys-
tems and begin with an atom in front of a sufficiently
thick magnetodielectric plate which can be effectively re-
garded as a semi-infinite half space [n = j = 1, ε1(ω) =
µ1(ω) ≡ 1, ε0(ω) ≡ ε(ω), µ0(ω) ≡ µ(ω)]. Using equa-
tions (78) and (79) we find that the reflection coefficients
in equation (87) read (b0 ≡ bM)

rs
n− =

µ(iu)b− bM

µ(iu)b + bM
, (88)

rp
n− =

ε(iu)b− bM

ε(iu)b + bM
. (89)

Note that equation (87) together with equations (88)
and (89) is equivalent to the result derived in reference [29]
semiclassically within the frame of linear response theory.

To further analyze equations (87)–(89), let us model
the permittivity by equation (73) and the permeability by

µ(ω) = 1 +
ω2

Pm

ω2
Tm − ω2 − iωγm

. (90)

In the long-distance (retarded) limit, i.e., zA � c/ω−
A ,

zA � c/ω−
M [ω−

A = min({ωk0|k = 1, 2, . . .}), ω−
M =

min(ωTe, ωTm)], equations (87)–(89) reduce to (see Ap-
pendix A)

U0(zA) =
C4

z4
A

, (91)

where

C4 = −3�cα
(0)
0 (0)

64π2ε0

∫ ∞

1

dv

[(
2
v2
− 1

v4

)

× ε(0)v −√ε(0)µ(0)− 1 + v2

ε(0)v +
√

ε(0)µ(0)− 1 + v2

− 1
v4

µ(0)v −√ε(0)µ(0)− 1 + v2

µ(0)v +
√

ε(0)µ(0)− 1 + v2

]
, (92)

while in the short-distance (nonretarded) limit, i.e., zA 
c/ω+

A and/or zA  c/ω+
M [ω+

A = max({ωk0|k = 1, 2, . . .}),
ω+

M = max(ωTe, ωTm)], equations (87)–(89) lead to (see
Appendix A)

U0(zA) = −C3

z3
A

+
C1

zA
, (93)

where

C3 =
�

16π2ε0

∫ ∞

0

du α
(0)
0 (iu)

ε(iu)− 1
ε(iu) + 1

≥ 0 (94)

and

C1 =
µ0�

16π2

∫ ∞

0

du u2α
(0)
0 (iu)

{
ε(iu)− 1
ε(iu) + 1

+
µ(iu)− 1
µ(iu) + 1

+
2ε(iu)[ε(iu)µ(iu)− 1]

[ε(iu) + 1]2

}
≥ 0. (95)
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Fig. 3. Border between attractive and repulsive long-distance
vdW potentials of an atom in front of an infinitely thick mag-
netodielectric plate according to equation (92) (C4 = 0). The
broken curves show the asymptotic behaviour as given by equa-
tions (99) (inset) and (101).

It should be pointed out that this asymptotic behaviour
also remains valid for multiresonance permittivities and
permeabilities of Drude-Lorentz type. Clearly, in this case
the minimum ω−

M and the maximum ω+
M are defined with

respect to all matter resonances.
Inspection of equation (92) reveals that the coeffi-

cient C4 in equation (91) for the long-distance behaviour
of the vdW potential is negative (positive) for a purely
electric (magnetic) plate, corresponding to an attrac-
tive (repulsive) force. For a genuinely magnetodielec-
tric plate the situation is more complex. As the coeffi-
cient C4 monotonously decreases as a function of ε(0) and
monotonously increases as a function of µ(0),

∂C4

∂ε(0)
< 0,

∂C4

∂µ(0)
> 0, (96)

the border between the attractive and repulsive poten-
tial, i.e., C4 = 0, can be marked by a unique curve in
the ε(0)µ(0)-plane, which is displayed in Figure 3. In the
limits of weak and strong magnetodielectric properties
the integral in equation (92) can be evaluated analyti-
cally. In the case of weak magnetodielectric properties,
χe(0) ≡ ε(0) − 1  1 and χm(0) ≡ µ(0) − 1  1, the
linear expansions

ε(0)v −√ε(0)µ(0)− 1 + v2

ε(0)v +
√

ε(0)µ(0)− 1 + v2



[
1
2
− 1

4v2

]
χe(0)− 1

4v2
χm(0) (97)

and

µ(0)v −√ε(0)µ(0)− 1 + v2

µ(0)v +
√

ε(0)µ(0)− 1 + v2



− 1
4v2

χe(0) +
[
1
2
− 1

4v2

]
χm(0) (98)

lead to

C4 = −�cα
(0)
0 (0)

640π2ε0

[
23 χe(0)− 7χm(0)

]
. (99)

For strong magnetodielectric properties, i.e., ε(0)� 1 and
µ(0)� 1, we may approximately set, on noting that large
values of v are effectively suppressed in the integral in
equation (92),

√
ε(0)µ(0)− 1 + v2 


√
ε(0)µ(0), (100)

thus

C4 =− 3�cα
(0)
0 (0)

64π2ε0

[
− 2

Z3
ln(1+Z) +

2
Z2

+
4
Z

ln(1+Z)

− 1
Z
− 4

3
− Z + 2Z2 − 2Z3ln

(
1 +

1
Z

)]
, (101)

with Z ≡ √µ(0)/ε(0) denoting the static impedance of
the material. Setting C4 = 0 in equations (99) and (101),
we obtain the asymptotic behaviour of the border curve in
the two limiting cases. The result shows that a repulsive
vdW potential can be realized if χm(0)/χe(0) ≥ 23/7 =
3.29 in the case of weak magnetodielectric properties, and
µ(0)/ε(0) ≥ 5.11 (Z ≥ 2.26) in the case of strong magne-
todielectric properties.

Apart from the different distance laws, the short-dis-
tance vdW potential, equation (93), differs from the long-
distance potential, equation (91), in two respects. First,
the relevant coefficients C3 and C1 are not only deter-
mined by the static values of the permittivity and the per-
meability, as is seen from equations (94) and (95), and sec-
ond, equations (93)–(95) reveal that electric and magnetic
properties give rise to potentials with different distance
laws and signs [C3 > 0 dominant (and C1 > 0) if ε �= 1 and
µ = 1, while C3 = 0 and C1 > 0 if ε = 1 and µ �= 1]. How-
ever, although for the case of a purely magnetic plate a
repulsive vdW potential proportional to 1/zA is predicted,
in practice the attractive 1/z3

A term will always dominate
for sufficiently small values of zA, because of the always
existing electric properties of the plate. Hence when in the
long-distance limit the potential becomes repulsive due to
sufficiently strong magnetic properties, then the forma-
tion of a potential wall at intermediate distances becomes
possible. It is evident that with decreasing strength of the
electric properties the maximum of the wall is shifted to
smaller distances while increasing in height.

In the limiting case of weak electric properties, i.e.,
ωPe/ωTe  1 and ωPe/ωPm  1 [recall equations (73)
and (90)] one can thus expect that the wall is situated
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within the short-distance range, so that equations (93)–
(95) can be used to determine both its position and height.
From equation (93) we find that the wall maximum is at

zmax
A =

√
3C3

C1
(102)

and has a height of

U(zmax
A ) =

2
3

√
C3

1

3C3
. (103)

In order to evaluate the integrals in equations (94)
and (95) for the coefficients C3 and C1, respectively, let us
restrict our attention to the case of a two-level atom and
disregard absorption (γe 
 0, γm 
 0). Straightforward
calculation yields (ωPe/ωTe  1, ωPe/ωPm  1)

C3 
 |d01|2
96πε0

ω2
Pe

ω2
Te

ωTe

ω10+ωTe
(104)

and

C1 
 µ0�

16π2

∫ ∞

0

du u2α
(0)
0 (iu)

[
µ(iu)− 1
µ(iu) + 1

+
µ(iu)− 1

2

]

=
µ0|d01|2ω2

Pm

96π

ω10(2ω10 + ωSm + ωTm)
(ω10 + ωSm)(ω10 + ωTm)

(105)

[ωSm = (ω2
Tm+ 1

2ω2
Pm)1/2]. Substitution of equations (104)

and (105) into equations (102) and (103), respectively,
leads to

zmax
A =

c

ωPm

ωPe

ωTe

√
ωTe(ω10 + ωTm)
ω10(ω10 + ωTe)

×
√

3(ω10 + ωSm)
(2ω10 + ωSm + ωTm)

(106)

and

U(zmax
A ) =

|d01|2ω3
Pm

48πε0c3

ωTe

ωPe

√
ω10 + ωTe

ωTe

×
[

ω10(2ω10 + ωSm + ωTm)
3(ω10 + ωSm)(ω10 + ωTm)

] 3
2

. (107)

Note that consistency with the assumption of the wall oc-
curring at short distances requires that zmax

A  c/ω+
M —

a condition which is easily fulfilled for sufficiently small
values of ωPe/ωPm. Inspection of equation (107) shows
that the height of the wall increases with ωPm, but de-
creases with increasing ωTm or increasing ωPe/ωTe =√

ε(0)− 1. Since the dependence of U(zmax
A ) on ωPm is

seen to be much stronger than its dependence on ωTm,
the wall height increases with ωTm for given ωPm/ωTm =√

µ(0)− 1.
The distance-dependence of the vdW potential, as cal-

culated from equation (87) together with equations (88)
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Fig. 4. The vdW potential of a ground-state two-level atom
situated in front of an infinitely thick magnetodielectric plate is
shown as a function of the distance between the atom and the
plate for different values of ωPm (ωPe/ω10 = 0.75, ωTe/ω10 =
1.03, ωTm/ω10 = 1, γe/ω10 = γm/ω10 = 0.001).

and (89) for a two-level atom in front of a thick mag-
netodielectric plate whose permittivity and permeability
are modelled by equations (73) and (90), respectively, is
illustrated in Figure 4. The figure reveals that the re-
sults derived above for the case where the potential wall is
observed in the short-distance range remain qualitatively
valid also for larger distances. So it is seen that for suffi-
ciently large values of ωPm a potential wall begins to form
and grows in height as ωPm increases.

In view of left-handed materials (cf. Refs. [37,38,42]),
which simultaneously exhibit negative real parts of ε(ω)
and µ(ω) within some (real) frequency interval such that
the real part of the refractive index becomes negative
therein, the question may arise whether these materials
would have an exceptional effect on the ground-state CP
force. The answer is obviously no, because the ground-
state vdW potential as given by equation (87) together
with equations (88) and (89) is expressed in terms of the
always positive values of the permittivity and the per-
meability at imaginary frequencies. Clearly, the situation
may change for an atom prepared in an excited state. In
such a case, the vdW potential is essentially determined
by the real part of the Green tensor [cf. equations (65)
and (67)]. When there are transition frequencies that lie
in frequency intervals where the material behaves left-
handed, then particularities may occur.

4.2 Plate of finite thickness

Let us now consider an atom in front of a magnetodi-
electric plate of finite thickness d1 ≡ d [n = j = 2,
ε1(ω) ≡ ε(ω), µ1(ω) ≡ µ(ω), ε0(ω) = ε2(ω) ≡ 1,
µ0(ω) = µ2(ω) ≡ 1]. Using equations (78) and (79) we



26 The European Physical Journal D

zAω10/c

U
0
(z

A
)1

2π
2
ε 0

c3
/
(ω

3 1
0
|d

0
1
|2 )

dω10/c= 0.01
dω10/c= 0.10
dω10/c= 0.55
dω10/c= 1.50
dω10/c= 4.00
dω10/c→∞

0

2 4 6 8

0.0012

0.0008

0.0004

Fig. 5. The vdW potential of a ground-state two-level atom
situated in front of a magnetodielectric plate is shown as a
function of the distance between the body and the interface
for different values of the plate thickness d (ωPe/ω10 = 0.75,
ωTe/ω10 = 1.03, ωPm/ω10 = 2, ωTm/ω10 = 1, γe/ω10 =
γm/ω10 = 0.001).

find that the reflection coefficients in equation (87) are
now given by (b1 ≡ bM)

rs
n− =

[µ2(iu)b2 − b2
M] tanh(bMd)

2µ(iu)bbM + [µ2(iu)b2 + b2
M] tanh(bMd)

, (108)

rp
n− =

[ε2(iu)b2 − b2
M] tanh(bMd)

2ε(iu)bbM + [ε2(iu)b2 + b2
M] tanh(bMd)

. (109)

Typical examples of the vdW potential obtained by nu-
merical evaluation of equation (87) [together with equa-
tions (108) and (109)] for a two-level atom are shown in
Figure 5, revealing that for sufficiently strong magnetic
properties the formation of a repulsive potential wall can
also be observed for a magnetodielectric plate of finite
thickness. In the figure, the medium parameters corre-
spond to those which have already been found to support
the formation of a repulsive potential wall in the case of
an infinitely thick plate. We see that the qualitative be-
haviour of the vdW potential is independent of the layer
thickness. In particular, all curves in Figure 5 feature a
repulsive long-range potential that leads to a potential
wall of finite height, the potential becoming attractive at
very short distances. However, the position and height of
the wall are seen to vary with the thickness of the plate.
While the position of the wall shifts only slightly as the
plate thickness is changed from very small to very large
values, the height of the wall reacts very sensitively as the
plate thickness is varied. For small values of the thickness
the potential height is very small, it increases towards a
maximum, and then decreases asymptotically towards the
value found for the infinitely thick plate as the thickness
is increased further towards very large values. It is worth
noting that there is an optimal plate thickness for creating
a maximum potential wall. In this case the plate thickness

is comparable to the position of the potential maximum
— a case which is realized between the two extremes of
infinitely thick and infinitely thin layer thickness.

Further insight can be gained by considering the two
limiting cases of an infinitely thick and an asymptoti-
cally thin plate. It is obvious that the integration in equa-
tion (87) is effectively limited by the exponential factor
e−2bzA to a circular region where b � 1/(2zA). In particu-
lar, in the limit of a sufficiently thick plate, d � zA, the
estimate

bMd ≥ bd ∼ d

2zA
� 1 (110)

[recall equations (80) and (82)] is valid within (the ma-
jor part of) the effective region of integration, and one
may hence make the approximation tanh(bMd) 
 1 in
equations (108) and (109), which then obviously reduce to
equations (88) and (89) valid for an infinitely thick plate.
On the contrary, in the limit of an asymptotically thin
plate,

√
ε(0)µ(0)d zA, we find that the inequalities

bMd ≤
√

ε(iu)µ(iu) bd ≤
√

ε(0)µ(0) bd

≤
√

ε(0)µ(0)d
2zA

 1 (111)

hold in the effective region of integration, and one may
hence linearly expand the integrand in equation (87) in
terms of bMd, which is equivalent to approximating the
reflection coefficients (108) and (109) according to

rs
n− 


µ2(iu)b2 − b2
M

2µ(iu)b
d, (112)

rp
n− 


ε2(iu)b2 − b2
M

2ε(iu)b
d. (113)

As in the case of an infinitely thick plate, cf. Section 4.1,
the dependence of the vdW potential on the atom-plate
separation in the case of an asymptotically thin plate re-
duces to simple power laws in the long- and short-distance
limits. In the long-distance limit, zA � c/ω−

A , zA � c/ω−
M,

equation (87) together with equations (112) and (113) re-
duces to (see Appendix A)

U(zA) =
D5

z5
A

, (114)

where

D5 = −�cα
(0)
0 (0)d

160π2ε0

[
14ε2(0)− 9

ε(0)
− 6µ2(0)− 1

µ(0)

]
, (115)

while in the short-distance limit, zA  c/ω+
A and/or

zA  c/ω+
M, equation (87) together with equations (112)

and (113) can be approximated by (see Appendix A)

U(zA) = −D4

z4
A

+
D2

z2
A

, (116)

where

D4 =
3�d

64π2ε0

∫ ∞

0

du α
(0)
0 (iu)

ε2(iu)− 1
ε(iu)

≥ 0 (117)
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Table 1. Signs and asymptotic power laws of the forces be-
tween various polarizable objects. In the table heading, “e”
stands for a purely electric object and “m” for a purely mag-
netic one. The signs + and − denote repulsive and attractive
forces, respectively. Half space is abbreviated by h.s.

distance short long
polarizability e ↔ e e ↔ m e ↔ e e ↔ m

atom ↔ h.s. − 1

z4
+

1

z2
− 1

z5
+

1

z5

atom ↔ thin plate − 1

z5
+

1

z3
− 1

z6
+

1

z6

atom ↔ atom − 1

z7
+

1

z5
− 1

z8
+

1

z8

h.s. ↔ h.s. − 1

z3
+

1

z
− 1

z4
+

1

z4

and

D2 =
µ0�d

64π2

∫ ∞

0

du u2α
(0)
0 (iu)

{
ε2(iu)− 1

ε(iu)

+
µ2(iu)− 1

µ(iu)
+

2[ε(iu)µ(iu)− 1]
ε(iu)

}
≥ 0. (118)

Comparing the power laws (114) and (116) with those
obtained for an infinitely thick plate, equations (91)
and (93), we see that the powers of 1/zA are universally
increased by one. Again, we find that in the long-distance
limit the vdW potential follows a power law that is inde-
pendent of the material properties of the plate, the sign
being determined by the relative strengths of the magnetic
and electric properties (a purely electric plate creates an
attractive vdW potential, while a purely magnetic plate
gives rise to a repulsive one). And again the short-distance
behaviours of the vdW potential for plates of different
material properties (i.e., electric/magnetic) differ in both
sign and leading power law (the repulsive potential in the
case of a purely magnetic plate being weaker than the at-
tractive potential in the case of a purely electric plate by
two powers in the atom-plate separation). Interestingly, a
similar behaviour, i.e., the same hierarchy of power laws
and the same signs have been found for the vdW force
between two atoms [31–33] and for the Casimir force be-
tween two semi-infinite half spaces [34]. This is illustrated
in Table 1, where the asymptotic power laws found for
an atom interacting with an infinitely thick plate, equa-
tions (91) and (95), and an asymptotically thin plate,
equations (114) and (118), are summarized and compared
to those valid for the interactions between two atoms or
two half spaces, respectively.

For weak magnetodielectric properties, the similarity
of the results displayed in Table 1 can be regarded as be-
ing a consequence of the additivity of vdW-type interac-
tions. In fact, in this case (which for a gaseous medium
of given atomic species corresponds to a sufficiently di-
lute gas) all results of the table can be derived from the
vdW interaction of two single atoms via pairwise sum-

mation. The additivity can explicitly be seen when com-
paring the result found for an asymptotically thin plate
with that of an infinitely thick plate in the case of weak
magnetodielectric properties [χe(iu) ≡ ε(iu) − 1  1,
χm(iu) ≡ µ(iu) − 1  1]. Making a linear expansion in
χe(iu) and χm(iu), we find that the vdW potential of an
infinitely thick plate, equation (87) together with equa-
tions (88) and (89), reduces to

∆1U(zA) = −�µ0

8π2

∫ ∞

0

du u2α(0)(iu)
∫ ∞

0

dq
q

b
e−2bzA

×
{[(

bc

u

)2

− 1 +
1
2

(
u

bc

)2
]
χe(iu)

−
[
1− 1

2

(
u

bc

)2
]
χm(iu)

}
, (119)

while the vdW potential of an asymptotically thin plate,
equation (87) together with equations (112) and (113),
can be approximated by

∆1U
d(zA) = −�µ0d

4π2

∫ ∞

0

du u2α(0)(iu)
∫ ∞

0

dq qe−2bzA

×
{[(

bc

u

)2

− 1 +
1
2

(
u

bc

)2
]
χe(iu)

−
[
1− 1

2

(
u

bc

)2
]
χm(iu)

}
. (120)

Comparison of equations (119) and (120) shows that for
weakly magnetodielectric media the vdW potential of an
infinitely thick plate is simply the integral over an infinite
number of thin-plate vdW potentials,

U0(zA) =
∫ ∞

zA

dz

d
Ud

0 (z). (121)

In the case of media with stronger magnetodielectric prop-
erties many-body interactions may be thought of as pre-
venting the vdW potential from being additive so that a
relation of the type of equation (121) is not true in gen-
eral. As a consequence, the coefficients of the asymptotic
power laws in Table 1 can not be related to each other
via simple additivity arguments in general. However, we
note from Table 1 that the consideration of many-body
corrections only changes the coefficients of the asymptotic
power laws, not the power laws themselves.

4.3 Planar cavity

Finally, let us consider an atom placed within the simplest
type of planar cavity, i.e., between two identical infinitely
thick magnetodielectric plates which are separated by a
distance d1 ≡ s [n = 2, j = 1, ε1(ω) = µ1(ω) ≡ 1,
ε0(ω) = ε2(ω) ≡ ε(ω), µ0(ω) = µ2(ω) ≡ µ(ω)]. From
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Fig. 6. The vdW potential of a ground-state two-level atom
situated between two infinitely thick (a) magnetodielectric
plates (ωPe/ω10 = 0.75, ωTe/ω10 = 1.03, ωPm/ω10 = 2,
ωTm/ω10 = 1, γe/ω10 = γm/ω10 = 0.001) (b) dielectric plates
[µ(ω) ≡ 1, other parameters as in (a)], (c) magnetic plates
[ε(ω) ≡ 1, other parameters as in (a)], which are separated by
a distance s = 15c/ω10, is shown as a function of the position
of the atom.

equations (78) and (79) it then follows that the reflection
coefficients in equation (85) are given by (b0 = b2 ≡ bM)

rs
j− = rs

j+ =
µ(iu)b− bM

µ(iu)b + bM
, (122)

rp
j− = rp

j+ =
ε(iu)b− bM

ε(iu)b + bM
. (123)

Examples of the vdW potential of a two-level atom
between two identical infinitely thick magnetodielectric
plates as calculated from equation (85) together with
equations (122) and (123) are plotted in Figure 6. It is
seen that the attractive (repulsive) potentials associated
with each of two purely electric (magnetic) plates com-
bine to an infinite potential wall (well) at the center of
the cavity. Hence, a potential well of finite depth at the
center of the cavity can be realized in the case of two gen-
uinely magnetodielectric plates of sufficiently strong mag-
netic properties as shown in the figure. Provided that ap-
propriate materials would be available, this feature could
in principle be used for the trapping and guiding of atoms.

5 Summary and conclusions

Within the framework of exact macroscopic QED in lin-
ear, causal media, we have given a unified theory of the CP
force acting on an atom when placed near an arbitrary ar-
rangement of dispersing and absorbing magnetodielectric
bodies. We have considered both the familiar perturbative
approach to the problem, where the atom-field coupling
energy calculated in lowest-order perturbation theory is
regarded as the potential associated with the CP force

acting on the atom prepared in an energy eigenstate, and
a dynamical approach based on the Lorentz force averaged
with respect to the body-assisted electromagnetic vacuum
and the internal motion of the atom. In particular, the the-
ory allows to extend the quantum mechanical calculation
of the interaction energy to the realistic case of material
dispersion and absorption — a case for which standard
mode expansion of the electromagnetic field runs into dif-
ficulties. So, the theory yields the vdW potential in terms
of the electromagnetic-field scattering Green tensor and
the lowest-order atomic polarizability in a natural manner,
without borrowing arguments from other theories such as
the widely used linear response theory.

In contrast to the perturbative treatment of the CP
force, the dynamical treatment allows for including ar-
bitrary excited atomic states, their temporal evolution
and thus transient components of the force, and the in-
fluence of the body-induced shifting and broadening of
the atomic transitions on the force. Whereas level shifting
can, at least for very small atom-body distances, notice-
ably modify both the resonant and the off-resonant force
components, level broadening effectively affects only the
resonant components. Thus the perturbative treatment
may be justified for the purely off-resonant ground-state
force, while being inadequate for the excited-state force
containing resonant components (leaving aside its obvious
inability to describe the transient nature of excited-state
components).

Finally, we have applied the theory to analyze the com-
peting effects of the electric and magnetic properties on
the CP force acting on a ground-state atom placed within
a magnetodielectric multilayer system, studying the cor-
responding vdW potential for the cases of thick and thin
plates as well as a planar cavity. In close analogy to the
vdW interaction between two atoms or the Casimir force
between two plates, the electric and magnetic properties
compete in creating attractive and repulsive force com-
ponents, respectively. In particular, if the atom interacts
with a magnetodielectric plate of sufficiently strong mag-
netic properties, a potential wall can be formed. We have
given conditions for the creation of such a wall and shown
that there is an optimal plate thickness for maximizing the
height of the wall. Placing the atom between two magne-
todielectric plates each of which giving rise to a potential
wall, one can combine the two potentials to a potential
well. Needless to say that the thorough understanding of
the interplay of electric and magnetic material properties
can serve as a roadmap showing desirable directions of
research in material design when aiming at shaping vdW
potentials in a controlled way.
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Appendix A: Long- and short-distance limits

The long-distance (short-distance) limit corresponds to
separation distances zA between the atom and the mul-
tilayer system which are much greater (smaller) than the
wavelengths corresponding to typical frequencies of the
atom and the multilayer system. To obtain approximate
results for the two limiting cases, let us analyze the u-
integral in equation (87) in a little more detail and begin
with the long-distance limit, i.e.,

zA � c

ω−
A

, zA � c

ω−
M

, (124)

where ω−
A = min({ωk0|k = 1, 2 . . .}) is the lowest atomic

transition frequency, and ω−
M = min(ωTe, ωTm) is the low-

est medium resonance frequency. For convenience, we in-
troduce the new integration variable

v =
cb

u
(125)

and transform the integral according to
∫ ∞

0

du

∫ ∞

0

dq
q

b
e−2bzA . . . �→
∫ ∞

1

dv

∫ ∞

0

du
u

c
e−2zAvu/c . . . , (126)

where bM has to be replaced according to

bM �→ u

c

√
ε(iu)µ(iu)− 1 + v2. (127)

Inspection of equation (87) together with equations (88)
and (89), or equations (112) and (113), respectively, as
well as equation (126) reveals that the frequency interval
giving the main contribution to the respective u-integral
is determined by a set of effective cutoff functions, namely

f(u) = e−2zAu/c, (128)

gk(u) =
1

1 + (u/ωk0)2
, (129)

which enter via the atomic polarizability, cf. equa-
tion (48), and

he(u) =
1

1 + (u/ωTe)2
, (130)

hm(u) =
1

1 + (u/ωTm)2
, (131)

which enter the reflection coefficients as given by equa-
tions (88) and (89), or equations (112) and (113), respec-
tively, via ε(iu) and µ(iu), cf. equations (73) and (90). The
cutoff functions obviously give their main contributions in
regions, where

u � c

2zA
for f(u), (132)

u � ωk0 for gk(u), (133)

u � ωTe for he(u), (134)

u � ωTm for hm(u). (135)

Combining equations (132)–(135) with equation (124),
we find that the function f(u) effectively limits the u-
integration to a region where

u

ωk0
≤ u

ω−
A

� c

2zAω−
A

 1, (136)

u

ωTe
≤ u

ω−
M

� c

2zAω−
M

 1, (137)

u

ωTm
≤ u

ω−
M

� c

2zAω−
M

 1. (138)

Performing a leading-order expansion of the integrand
in equation (87) in terms of the small quantities u/ωk0,
u/ωTe, and u/ωTm, we may set

α
(0)
0 (iu) 
 α

(0)
0 (0), ε(iu) 
 ε(0), µ(iu) 
 µ(0). (139)

Combining equations (125)–(127) and equation (139) with
equation (87) together with equations (88) and (89), or
equations (112) and (113), respectively, and evaluating
the remaining u-integrals we arrive at equation (91) [to-
gether with equation (92)] and equation (114) [together
with equation (115)].

The short-distance limit, on the contrary, is defined by

zA  c

ω+
A

and/or zA  c

ω+
M

, (140)

where ω+
A = max({ωk0|k = 1, 2, . . .}) is the highest in-

neratomic transition frequency and ω+
M = max(ωTe, ωTm)

is the highest medium resonance frequency. Again, it is
convenient to change the integration variables in equa-
tion (87), but now we transform according to

∫ ∞

0

du

∫ ∞

0

dq
q

b
e−2bzA . . . �→

∫ ∞

0

du

∫ ∞

u/c

db e−2bzA . . . , (141)

where bM has to be replaced according to

bM �→
√

u2

c2

[
ε(iu)µ(iu)− 1

]
+ b2. (142)

Combining equations (132)–(135) with equation (140) re-
veals that the functions gk(u), he(u), and hm(u) limit the
u-integration to a region where

zAu

c
� zAω+

A

c
 1 (143)

and/or
zAu

c
� zAω+

M

c
 1. (144)

A valid approximation to the u-integral in equation (87)
can hence be obtained by performing a Taylor expan-
sion in zAu/c. To that end, we apply the transforma-
tion (141) to equation (87) together with equations (88)
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and (89), or equations (112) and (113), respectively, retain
only the leading-order terms in u/(cb) (corresponding to
the leading-order terms in zAu/c in the u-integral) and
carry out the b-integral. After again discarding higher-
order terms in zAu/c, we arrive at equation (93) [together
with equations (94) and (95)] and equation (116) [together
with equations (117) and (118)], respectively.
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92, 050404 (2004)

37. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart,
IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

38. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser,
S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

39. H.T. Dung, S.Y. Buhmann, L. Knöll, D.-G. Welsch, S.
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